3.2.23 \(\int \frac {x}{(a+b x+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [123]

Optimal. Leaf size=609 \[ \frac {2 \left (a \left (2 c^2 d-b c e+b^2 f-2 a c f\right )+c (b c d-2 a c e+a b f) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}+\frac {f \left (2 d (c e-b f)-(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}-\frac {f \left (2 d (c e-b f)-(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}} \]

[Out]

2*(a*(-2*a*c*f+b^2*f-b*c*e+2*c^2*d)+c*(a*b*f-2*a*c*e+b*c*d)*x)/(-4*a*c+b^2)/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e
))/(c*x^2+b*x+a)^(1/2)+1/2*f*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2
^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2))*(2*d*(-b*f+c*e)-
(-a*f+c*d)*(e-(-4*d*f+e^2)^(1/2)))/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e))*2^(1/2)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*
d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)-1/2*f*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(
b*f-c*(e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2
)^(1/2))^(1/2))*(2*d*(-b*f+c*e)-(-a*f+c*d)*(e+(-4*d*f+e^2)^(1/2)))/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e))*2^(1/2
)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 3.56, antiderivative size = 609, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1030, 1046, 738, 212} \begin {gather*} \frac {2 \left (a \left (-2 a c f+b^2 f-b c e+2 c^2 d\right )+c x (a b f-2 a c e+b c d)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}+\frac {f \left (2 d (c e-b f)-\left (e-\sqrt {e^2-4 d f}\right ) (c d-a f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {f \left (2 d (c e-b f)-\left (\sqrt {e^2-4 d f}+e\right ) (c d-a f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(2*(a*(2*c^2*d - b*c*e + b^2*f - 2*a*c*f) + c*(b*c*d - 2*a*c*e + a*b*f)*x))/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b
*d - a*e)*(c*e - b*f))*Sqrt[a + b*x + c*x^2]) + (f*(2*d*(c*e - b*f) - (c*d - a*f)*(e - Sqrt[e^2 - 4*d*f]))*Arc
Tanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d
*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*((c*
d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]])
 - (f*(2*d*(c*e - b*f) - (c*d - a*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(
b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 -
 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*Sqrt[c*
e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1030

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*e)
*(c*e - b*f))*(p + 1)))*(g*c*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) + c*(
g*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) - h*(b*c*d - 2*a*c*e + a*b*f))*x), x] + Dist[1/((b^2 - 4*a*c)*((c*d - a*
f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(b*h - 2*g*c)
*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1) + (b^2*(g*f) - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a*
f) - a*((-h)*c*e)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((g*c)*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d +
b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (2*f*((g*c)*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f -
 c*(b*e + 2*a*f)))*(p + q + 2) - (b^2*g*f - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a*f) - a*((-h)*c*e)))*(b
*f*(p + 1) - c*e*(2*p + q + 4)))*x - c*f*(b^2*(g*f) - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a*f) + a*h*c*e
))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2
- 4*d*f, 0] && LtQ[p, -1] && NeQ[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f), 0] &&  !( !IntegerQ[p] && ILtQ[q, -1
])

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {x}{\left (a+b x+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx &=\frac {2 \left (a \left (2 c^2 d-b c e+b^2 f-2 a c f\right )+c (b c d-2 a c e+a b f) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int \frac {\frac {1}{2} \left (b^2-4 a c\right ) d (c e-b f)+\frac {1}{2} \left (b^2-4 a c\right ) f (c d-a f) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=\frac {2 \left (a \left (2 c^2 d-b c e+b^2 f-2 a c f\right )+c (b c d-2 a c e+a b f) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {\left (f \left (2 d (c e-b f)-(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}+\frac {\left (f \left (2 d (c e-b f)-(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=\frac {2 \left (a \left (2 c^2 d-b c e+b^2 f-2 a c f\right )+c (b c d-2 a c e+a b f) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}+\frac {\left (2 f \left (2 d (c e-b f)-(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}-\frac {\left (2 f \left (2 d (c e-b f)-(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=\frac {2 \left (a \left (2 c^2 d-b c e+b^2 f-2 a c f\right )+c (b c d-2 a c e+a b f) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}+\frac {f \left (2 d (c e-b f)-(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}-\frac {f \left (2 d (c e-b f)-(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.93, size = 570, normalized size = 0.94 \begin {gather*} \frac {-4 a^2 c f+2 b c^2 d x+2 a \left (b^2 f+2 c^2 (d-e x)+b c (-e+f x)\right )-\left (b^2-4 a c\right ) \sqrt {a+x (b+c x)} \text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {-b c d e \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+b^2 d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+a c d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a^2 f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+2 c^{3/2} d e \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 b \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-c d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+a f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{2 b \sqrt {c} d-a \sqrt {c} e-4 c d \text {$\#$1}-b e \text {$\#$1}+2 a f \text {$\#$1}+3 \sqrt {c} e \text {$\#$1}^2-2 f \text {$\#$1}^3}\&\right ]}{\left (b^2-4 a c\right ) \left (c^2 d^2-b c d e+f \left (b^2 d-a b e+a^2 f\right )+a c \left (e^2-2 d f\right )\right ) \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(-4*a^2*c*f + 2*b*c^2*d*x + 2*a*(b^2*f + 2*c^2*(d - e*x) + b*c*(-e + f*x)) - (b^2 - 4*a*c)*Sqrt[a + x*(b + c*x
)]*RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 -
2*Sqrt[c]*e*#1^3 + f*#1^4 & , (-(b*c*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]) + b^2*d*f*Log[-(Sqrt[
c]*x) + Sqrt[a + b*x + c*x^2] - #1] + a*c*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a^2*f^2*Log[-(S
qrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + 2*c^(3/2)*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*
b*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - c*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^
2] - #1]*#1^2 + a*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c]*e - 4*c*
d*#1 - b*e*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3) & ])/((b^2 - 4*a*c)*(c^2*d^2 - b*c*d*e + f*(b^2*d - a*
b*e + a^2*f) + a*c*(e^2 - 2*d*f))*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1938\) vs. \(2(560)=1120\).
time = 0.16, size = 1939, normalized size = 3.18

method result size
default \(\text {Expression too large to display}\) \(1939\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/2*(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)/f*(2/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e
*f-2*c*d*f+c*e^2)*f^2/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*
d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)
-2*f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e
^2)*(2*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e))/(2*c*(-b*f*(-4*d*f+e^2)^(1/2)+(
-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2-1/f^2*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)^2)/((x+1/2*(e+(-4
*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f
+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+
e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2*2^(1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f
^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c
*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)
^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+
4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(
1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+1/2*(-e+(-4*d*f+e^2)^(1/2
))/(-4*d*f+e^2)^(1/2)/f*(2/(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2/((x
-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(b*
f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2*(c*(-4*d*f+e^2)^(1/2)+b*
f-c*e)*f/(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f
+e^2)^(1/2)))+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f)/(2*c*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*
e*f-2*c*d*f+c*e^2)/f^2-(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)^2/f^2)/((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+(c*(-4*d*f
+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*
a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2/(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c
*e^2)*f^2*2^(1/2)/((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((
(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)
/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f
-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/
f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^
(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-%e^2>0)', see `assume?`
for more det

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\left (a + b x + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**2+b*x+a)**(3/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x/((a + b*x + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x}{{\left (c\,x^2+b\,x+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)

[Out]

int(x/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________